Online regularized pairwise learning with least squares loss

Author:

Wang Cheng1,Hu Ting2

Affiliation:

1. School of Mathematics and Big Data, Huizhou University, Huizhou 516007, P. R. China

2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China

Abstract

In this paper, we study online algorithm for pairwise problems generated from the Tikhonov regularization scheme associated with the least squares loss function and a reproducing kernel Hilbert space (RKHS). This work establishes the convergence for the last iterate of the online pairwise algorithm with the polynomially decaying step sizes and varying regularization parameters. We show that the obtained error rate in [Formula: see text]-norm can be nearly optimal in the minimax sense under some mild conditions. Our analysis is achieved by a sharp estimate for the norms of the learning sequence and the characterization of RKHS using its associated integral operators and probability inequalities for random variables with values in a Hilbert space.

Funder

NSFC

NSF of Guangdong Province in China

National Social Science Fund in China

Humanities and Social Science Research in Chinese Ministry of Education

Foundation for Distinguished Young Talents in Higher Education of Guangdong, China

the Major Incubation Research Project of Huizhou University

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Error analysis of kernel regularized pairwise learning with a strongly convex loss;Mathematical Foundations of Computing;2022

2. Online regularized pairwise learning with non-i.i.d. observations;International Journal of Wavelets, Multiresolution and Information Processing;2021-09-09

3. Generalization ability of online pairwise support vector machine;Journal of Mathematical Analysis and Applications;2021-05

4. Learning theory of minimum error entropy under weak moment conditions;Analysis and Applications;2021-03-06

5. Convergence of online pairwise regression learning with quadratic loss;Communications on Pure & Applied Analysis;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3