Regularized learning schemes in feature Banach spaces

Author:

Combettes Patrick L.1,Salzo Saverio23,Villa Silvia4

Affiliation:

1. Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA

2. Laboratory for Computational and Statistical Learning, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

3. Istituto Italiano di Tecnologia, 16163 Genova, Italy

4. Dipartimento di Matematica, Politecnico di Milano, 20133 Milano, Italy

Abstract

This paper proposes a unified framework for the investigation of constrained learning theory in reflexive Banach spaces of features via regularized empirical risk minimization. The focus is placed on Tikhonov-like regularization with totally convex functions. This broad class of regularizers provides a flexible model for various priors on the features, including, in particular, hard constraints and powers of Banach norms. In such context, the main results establish a new general form of the representer theorem and the consistency of the corresponding learning schemes under general conditions on the loss function, the geometry of the feature space, and the modulus of total convexity of the regularizer. In addition, the proposed analysis gives new insight into basic tools such as reproducing Banach spaces, feature maps, and universality. Even when specialized to Hilbert spaces, this framework yields new results that extend the state of the art.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Analysis

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Algorithms for Stochastic Complementary Composite Minimization;SIAM Journal on Optimization;2024-01-05

2. Explicit representations for Banach subspaces of Lizorkin distributions;Analysis and Applications;2023-07-27

3. Sparse machine learning in Banach spaces;Applied Numerical Mathematics;2023-05

4. Understanding neural networks with reproducing kernel Banach spaces;Applied and Computational Harmonic Analysis;2023-01

5. An Efficient Collocation Algorithm with SSP-RK43 Scheme to Solve Rosenau–KdV–RLW Equation;International Journal of Applied and Computational Mathematics;2021-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3