Affiliation:
1. Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne, Switzerland
Abstract
The Lizorkin space is well suited to the study of operators like fractional Laplacians and the Radon transform. In this paper, we show that the space is unfortunately not complemented in the Schwartz space. In return, we show that it is dense in [Formula: see text], a property that is shared by the larger Schwartz space and that turns out to be useful for applications. Based on this result, we investigate subspaces of Lizorkin distributions that are Banach spaces and for which a continuous representation operator exists. Then, we introduce a variational framework that involves these spaces and that makes use of the constructed operator. By investigating two particular cases of this framework, we are able to strengthen existing results for fractional splines and 2-layer ReLU networks.
Funder
European Unions Horizon 2020
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献