Affiliation:
1. Department of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang 310036, P. R. China
Abstract
In this paper, we introduce some neural network interpolation operators activated by smooth ramp functions. By using the smoothness of the ramp functions, we can give some useful estimates of the derivatives of the neural networks, which combining with some techniques in approximation theory enable us to establish the converse estimates of approximation by neural networks. We establish both the direct and the converse results of approximation by the new neural network operators defined by us, and thus give the essential approximation rate. To improve the approximation rate for functions of smoothness, we further introduce linear combinations of the new operators. The new combinations interpolate the objective function and its derivative. We also estimate the uniform convergence rate and simultaneous approximation rate by the new combinations.
Funder
Zhejiang Provincial Natural Science Foundation
The National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Analysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献