The approximation capabilities of Durrmeyer-type neural network operators

Author:

Coroianu Lucian,Costarelli DaniloORCID,Natale MariarosariaORCID,Pantiş Alexandra

Abstract

AbstractIn this paper, a new family of neural network (NN) operators is introduced. The idea is to consider a Durrmeyer-type version of the widely studied discrete NN operators by Costarelli and Spigler (Neural Netw 44:101–106, 2013). Such operators are constructed using special density functions generated from suitable sigmoidal functions, while the reconstruction coefficients are based on a convolution between a general kernel function $$\chi $$ χ and the function being reconstructed, f. Here, we investigate their approximation capabilities, establishing both pointwise and uniform convergence theorems for continuous functions. We also provide quantitative estimates for the approximation order thanks to the use of the modulus of continuity of f; this turns out to be strongly influenced by the asymptotic behaviour of the sigmoidal function $$\sigma $$ σ . Our study also shows that the estimates we provide are, under suitable assumptions, the best possible. Finally, $$L^p$$ L p -approximation is also established. At the end of the paper, examples of activation functions are discussed.

Funder

Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni

European Union - NextGenerationEU under the Italian Ministry of University and Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3