Humanoid Locomotion Control and Generation Based on Contact Wrench Cones

Author:

Zheng Yu1,Liao Shi Wen2,Yamane Katsu3

Affiliation:

1. Tencent Robotics X, Shenzhen, Guangdong Province, P. R. China

2. Department of Electrical and Computer Engineering, University of Michigan-Dearborn, USA

3. Honda Research Institute USA, Mountain View, CA, USA

Abstract

This paper presents a general framework for locomotion control and generation of humanoid robots. Different from most of the existing work which uses the zero-moment point (2mp) to determine the feasibility of robot’s motion, we use the so-called contact wrench cone to derive motion feasibility conditions, whole-body motion controllers, and locomotion generators. The contact wrench cone consists of all feasible wrenches that can be applied to the robot through contacts, which provide allowable external forces and moments for realizing the robot’s motion. Algorithms are proposed to compute quantities defined on linear representations of a general convex cone, which can be various contact wrench cones as needed in developing motion generators and controllers. Based on the contact wrench cone for contact links and the proposed algorithms as well as a decomposition of the whole-body dynamics of a floating-base humanoid robot, we derive two motion tracking controllers. One controller contains a single quadratic program with linear inequality constraints, while the other consists of two quadratic programs which can be quickly solved by one of the proposed algorithms and in a closed form, respectively. Both controllers can be applied in real-time and achieve similar motion tracking performance in simulation. Based on contact wrench cones, furthermore, we derive two motion generation methods for humanoid robots. The first method adapts a reference motion, most often infeasible, to the robot by warping the motion’s time line so that the motion trajectory will remain the same but the velocity and acceleration profiles will be changed. The second method generates bipedal locomotion for given footsteps. All the proposed motion controllers and generators are applicable to general scenarios including uneven terrains and motions with the support of other links besides feet.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3