Design, Modeling and Control of an Enhanced Soft Pneumatic Network Actuator

Author:

Cao Guizhou1ORCID,Chu Bing2,Huo Benyan1,Liu Yanhong1

Affiliation:

1. School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

2. School of Electronic and Computer Science, University of Southampton, Southampton SO171BJ, UK

Abstract

Inspired by nature, soft-bodied pneumatic network actuators (PNAs) composed of compliant materials have been successfully applied in the fields of industry and daily life because of large-amplitude motion and long life span. However, compliant materials simultaneously limit the output force, challenge the dynamic modeling and impede corresponding control. In this paper, we investigate the design, modeling and control of an enhanced PNA. First, an enhanced structure is proposed to improve the output force of PNAs with features of simplification of fabrication, lightweight and compliant material retentivity. Second, a dynamic model of the enhanced PNA is constructed based on the Euler–Lagrange (EL) method. Finally, an adaptive robust controller is addressed for PNAs in presence of system uncertainties without knowledge of its bounds in prior. Experiment results show that the output force of the enhanced PNA is four times greater than the actuator without enhanced structures, which affords to theoretical estimation. Moreover, the proposed controller is utilized and compared with previous works in humanoid finger experiments to illustrate the effectiveness.

Funder

National Key Research and Development Project

National Natural Science Foundation of China

Outstanding Foreign Scientist Support Project of Henan Province

Science & Technology Research Project in Henan Province of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Observer-based Adaptive Robust Control of Soft Pneumatic Network Actuators;International Journal of Control, Automation and Systems;2022-04-21

2. Observer-Based Adaptive Sliding Mode Control for Soft Actuators with Input Constraints;Proceedings of 2021 Chinese Intelligent Automation Conference;2021-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3