Facilitate sEMG-Based Human–Machine Interaction Through Channel Optimization

Author:

Wang Zheng1,Fang Yinfeng2,Li Gongfa3,Liu Honghai45

Affiliation:

1. College of Computer Science & Technology, Zhejiang University of Technology, 288 Liuhe Rd, Hangzhou 310023, P. R. China

2. School of Communication Engineering, Hangzhou Dianzi University, 1158, No. 2 Avenue, Xiasha, Hangzhou 310018, P. R. China

3. Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Institute of Precision Manufacturing, 947 Heping Avenue, Wuhan 430081, P. R. China

4. Intelligent Systems and Biomedical Robotics Group, School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK

5. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Abstract

Electromyography (EMG) has been widely accepted to interact with prosthetic hands, but still limited to using few channels for the control of few degrees of freedom. The use of more channels can improve the controllability, but it also increases system’s complexity and reduces its wearability. It is yet clear if optimizely placing the EMG channel could provide a feasible solution to this challenge. This study customized a genetic algorithm to optimize the number of channels and its position on the forearm in inter-day hand gesture recognition scenario. Our experimental results demonstrate that optimally selected 14 channels out of 16 can reach a peak inter-day hand gesture recognition accuracy at 72.3%, and optimally selecting 9 and 11 channels would reduce the performance by 3% and 10%. The cross-validation results also demonstrate that the optimally selected EMG channels from five subjects also work on the rest of the subjects, improving the accuracies by 3.09% and 4.5% in 9- and 11-channel combination, respectively. In sum, this study demonstrates the feasibility of channel reduction through genetic algorithm, and preliminary proves the significance of EMG channel optimization for human–machine interaction.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3