Towards optimizing electrode configurations for silent speech recognition based on high-density surface electromyography

Author:

Zhu MingxingORCID,Zhang Haoshi,Wang Xiaochen,Wang Xin,Yang Zijian,Wang Cheng,Samuel Oluwarotimi WilliamsORCID,Chen ShixiongORCID,Li Guanglin

Abstract

Abstract Objective. Silent speech recognition (SSR) based on surface electromyography (sEMG) is an attractive non-acoustic modality of human-machine interfaces that convert the neuromuscular electrophysiological signals into computer-readable textual messages. The speaking process involves complex neuromuscular activities spanning a large area over the facial and neck muscles, thus the locations of the sEMG electrodes considerably affected the performance of the SSR system. However, most of the previous studies used only a quite limited number of electrodes that were placed empirically without prior quantitative analysis, resulting in uncertainty and unreliability of the SSR outcomes. Approach. In this study, the technique of high-density sEMG was proposed to provide a full representation of the articulatory muscle activities so that the optimal electrode configuration for SSR could be systemically explored. A total of 120 closely spaced electrodes were placed on the facial and neck muscles to collect the high-density sEMG signals for classifying ten digits (0–9) silently spoken in both English and Chinese. The sequential forward selection algorithm was adopted to explore the optimal electrodes configurations. Main Results. The results showed that the classification accuracy increased rapidly and became saturated quickly when the number of selected electrodes increased from 1 to 120. Using only ten optimal electrodes could achieve a classification accuracy of 86% for English and 94% for Chinese, whereas as many as 40 non-optimized electrodes were required to obtain comparable accuracies. Also, the optimally selected electrodes seemed to be mostly distributed on the neck instead of the facial region, and more electrodes were required for English recognition to achieve the same accuracy. Significance. The findings of this study can provide useful guidelines about electrode placement for developing a clinically feasible SSR system and implementing a promising approach of human-machine interface, especially for patients with speaking difficulties.

Funder

Science and Technology Planning Project of Shenzhen

Science and Technology Program of Guangzhou

Shenzhen Governmental Basic Research Grant

National Natural Science Foundation of China

Shenzhen Science and Technology Development Fund

Science and Technology Planning Project of Guangdong Province

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3