Affiliation:
1. Institute of Intelligent Perception and Diagnosis, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
2. Servo Department, Shanghai Aerospace Control Technology Research Institute, Shanghai 201108, P. R. China
Abstract
Gait recognition is one of the key technologies for exoskeleton robot control. The recognition accuracy and robustness of existing gait recognition methods cannot well meet the needs of real-time control. There is still room for improvement in fine-grained gait recognition. In this regard, this paper proposes a gait recognition method based on the MiniRocket and inertial measurement units. In this paper, a human lower limb posture information collection device is developed to collect ten kinds of gait data of human lower limbs (walking, standing, running, backing off, going upstairs, going downstairs, going uphill, going downhill, stand at ease and squat). The MiniRocket algorithm was used to build a human gait recognition model, and the effects of algorithm parameters and the size of the window and shift on the performance of gait recognition were discussed, and user-independent experiments and user-dependent experiments were carried out, respectively, and compared with four algorithms of TST, TCN, RNN and LSTM. The experimental results show that the MiniRocket algorithm has an average recognition accuracy of 94.87% and 97.67% in the user-independent experiment and the user-dependent experiment, which is better than the other four algorithms. And the effectiveness of the method in the IMUs-based human gait recognition problem is shown, which provides some implications for fine-grained gait recognition.
Funder
The Major Research Plan of the National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Artificial Intelligence,Mechanical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献