A QUASI-PASSIVE LEG EXOSKELETON FOR LOAD-CARRYING AUGMENTATION

Author:

WALSH CONOR JAMES1,ENDO KEN2,HERR HUGH1

Affiliation:

1. Department of Mechanical Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

2. MIT Media Lab, 20 Ames Street, Cambridge, MA 02139, USA

Abstract

A quasi-passive leg exoskeleton is presented for load-carrying augmentation during walking. The exoskeleton has no actuators, only ankle and hip springs and a knee variable-damper. Without a payload, the exoskeleton weighs 11.7 kg and requires only 2 Watts of electrical power during loaded walking. For a 36 kg payload, we demonstrate that the quasi-passive exoskeleton transfers on average 80% of the load to the ground during the single support phase of walking. By measuring the rate of oxygen consumption on a study participant walking at a self-selected speed, we find that the exoskeleton slightly increases the walking metabolic cost of transport (COT) as compared to a standard loaded backpack (10% increase). However, a similar exoskeleton without joint springs or damping control (zero-impedance exoskeleton) is found to increase COT by 23% compared to the loaded backpack, highlighting the benefits of passive and quasi-passive joint mechanisms in the design of efficient, low-mass leg exoskeletons.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 284 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Cable-Driven Parallel Hip Exoskeleton for High-Performance Walking Assistance;IEEE Transactions on Industrial Electronics;2024-03

2. Exo skeleton pertinence and control techniques: A state-of-the-art review;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-02-05

3. Adaptive Oscillator-Based Gait Feature Extraction Method of Hip Exoskeleton for Stroke Patients;IEEE Transactions on Medical Robotics and Bionics;2024-02

4. Design and analysis of passive lower limb exoskeleton to reduce load carried by muscles and joints;1ST INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIAL SCIENCE AND TECHNOLOGY: ICAMST2022;2024

5. Robotics, Automation, and the Future of Sports;21st Century Sports;2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3