Multi-Robot SLAM in Dynamic Environments with Parallel Maps

Author:

Badalkhani Sajad1,Havangi Ramazan1,Farshad Mohsen1

Affiliation:

1. Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, 9717434765, Iran

Abstract

There is an extensive literature regarding multi-robot simultaneous localization and mapping (MRSLAM). In most part of the research, the environment is assumed to be static, while the dynamic parts of the environment degrade the estimation quality of SLAM algorithms and lead to inherently fragile systems. To enhance the performance and robustness of the SLAM in dynamic environments (SLAMIDE), a novel cooperative approach named parallel-map (p-map) SLAM is introduced in this paper. The objective of the proposed method is to deal with the dynamics of the environment, by detecting dynamic parts and preventing the inclusion of them in SLAM estimations. In this approach, each robot builds a limited map in its own vicinity, while the global map is built through a hybrid centralized MRSLAM. The restricted size of the local maps, bounds computational complexity and resources needed to handle a large scale dynamic environment. Using a probabilistic index, the proposed method differentiates between stationary and moving landmarks, based on their relative positions with other parts of the environment. Stationary landmarks are then used to refine a consistent map. The proposed method is evaluated with different levels of dynamism and for each level, the performance is measured in terms of accuracy, robustness, and hardware resources needed to be implemented. The method is also evaluated with a publicly available real-world data-set. Experimental validation along with simulations indicate that the proposed method is able to perform consistent SLAM in a dynamic environment, suggesting its feasibility for MRSLAM applications.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3