Affiliation:
1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
Abstract
This paper focuses on loop-closure detection (LCD) for a visual simultaneous localization and mapping (SLAM) system. We present a strategy that combines a Bayes filter and features from a pre-trained convolution neural network (CNN) to perform LCD. Rather than using features from only one layer, we fuse features from multiple layers based on spatial pyramid pooling. A flexible Bayes model is then formulated to integrate the sequential information and similarities that are computed by features at different scales. The introduction of a penalty factor and bidirectional propagation enables our approach to handle complex trajectories. We present extensive experiments on challenging datasets, and we compare our approach to state-of-the-art methods, to evaluate it. The results show that our approach can ensure remarkable performance under severe condition changes and handle trajectories that have different characteristics. We also show the advantages of Bayes filters over sequence matching in the experiments, and we analyze our feature fusion strategy by visualizing the activations of the CNN.
Funder
Aeronautics Science of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Artificial Intelligence,Mechanical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献