Metastability in a class of hyperbolic dynamical systems perturbed by heavy-tailed Lévy type noise

Author:

Högele Michael1,Pavlyukevich Ilya2

Affiliation:

1. Institut für Mathematik, Universität Potsdam, Am Neuen Palais 10, 14465 Potsdam, Germany

2. Institut für Mathematik, Friedrich–Schiller–Universität Jena, Ernst–Abbe–Platz 2, 07743 Jena, Germany

Abstract

We consider a finite dimensional deterministic dynamical system with finitely many local attractors Kι, each of which supports a unique ergodic probability measure Pι, perturbed by a multiplicative non-Gaussian heavy-tailed Lévy noise of small intensity ε > 0. We show that the random system exhibits a metastable behavior: there exists a unique ε-dependent time scale on which the system reminds of a continuous time Markov chain on the set of the invariant measures Pι. In particular our approach covers the case of dynamical systems of Morse–Smale type, whose attractors consist of points and limit cycles, perturbed by multiplicative α-stable Lévy noise in the Itô, Stratonovich and Marcus sense. As examples we consider α-stable Lévy perturbations of the Duffing equation and Pareto perturbations of a biochemical birhythmic system with two nested limit cycles.

Publisher

World Scientific Pub Co Pte Lt

Subject

Modeling and Simulation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3