Cutoff Thermalization for Ornstein–Uhlenbeck Systems with Small Lévy Noise in the Wasserstein Distance

Author:

Barrera G.ORCID,Högele M. A.ORCID,Pardo J. C.

Abstract

AbstractThis article establishes cutoff thermalization (also known as the cutoff phenomenon) for a class of generalized Ornstein–Uhlenbeck systems $$(X^\varepsilon _t(x))_{t\geqslant 0}$$ ( X t ε ( x ) ) t 0 with $$\varepsilon $$ ε -small additive Lévy noise and initial value x. The driving noise processes include Brownian motion, $$\alpha $$ α -stable Lévy flights, finite intensity compound Poisson processes, and red noises, and may be highly degenerate. Window cutoff thermalization is shown under mild generic assumptions; that is, we see an asymptotically sharp $$\infty /0$$ / 0 -collapse of the renormalized Wasserstein distance from the current state to the equilibrium measure $$\mu ^\varepsilon $$ μ ε along a time window centered on a precise $$\varepsilon $$ ε -dependent time scale $$\mathfrak {t}_\varepsilon $$ t ε . In many interesting situations such as reversible (Lévy) diffusions it is possible to prove the existence of an explicit, universal, deterministic cutoff thermalization profile. That is, for generic initial data x we obtain the stronger result $$\mathcal {W}_p(X^\varepsilon _{t_\varepsilon + r}(x), \mu ^\varepsilon ) \cdot \varepsilon ^{-1} \rightarrow K\cdot e^{-q r}$$ W p ( X t ε + r ε ( x ) , μ ε ) · ε - 1 K · e - q r for any $$r\in \mathbb {R}$$ r R as $$\varepsilon \rightarrow 0$$ ε 0 for some spectral constants $$K, q>0$$ K , q > 0 and any $$p\geqslant 1$$ p 1 whenever the distance is finite. The existence of this limit is characterized by the absence of non-normal growth patterns in terms of an orthogonality condition on a computable family of generalized eigenvectors of $$\mathcal {Q}$$ Q . Precise error bounds are given. Using these results, this article provides a complete discussion of the cutoff phenomenon for the classical linear oscillator with friction subject to $$\varepsilon $$ ε -small Brownian motion or $$\alpha $$ α -stable Lévy flights. Furthermore, we cover the highly degenerate case of a linear chain of oscillators in a generalized heat bath at low temperature.

Funder

Academy of Finland

CONACyT-MEXICO

Universidad de los Andes, Facultad de Ciencias

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cutoff Ergodicity Bounds in Wasserstein Distance for a Viscous Energy Shell Model with Lévy Noise;Journal of Statistical Physics;2024-08-27

2. Ergodicity bounds for stable Ornstein–Uhlenbeck systems in Wasserstein distance with applications to cutoff stability;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-11-01

3. Universal cutoff for Dyson Ornstein Uhlenbeck process;Probability Theory and Related Fields;2022-09-09

4. The cutoff phenomenon for the stochastic heat and wave equation subject to small Lévy noise;Stochastics and Partial Differential Equations: Analysis and Computations;2022-05-16

5. The Cutoff Phenomenon in Wasserstein Distance for Nonlinear Stable Langevin Systems with Small Lévy Noise;Journal of Dynamics and Differential Equations;2022-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3