Affiliation:
1. Escola de Matemática Aplicada (EMAp), Fundação Getulio Vargas (FGV), Praia de Botafogo 190, Office 507, Rio de Janeiro, RJ 22250-900, Brazil
Abstract
The functional Itô formula, firstly introduced by Bruno Dupire for continuous semimartingales, might be extended in two directions: different dynamics for the underlying process and/or weaker assumptions on the regularity of the functional. In this paper, we pursue the former type by proving the functional version of the Meyer–Tanaka formula. Following the idea of the proof of the classical time-dependent Meyer–Tanaka formula, we study the mollification of functionals and its convergence properties. As an example, we study the running maximum and the max-martingales of Yor and Obłój.
Publisher
World Scientific Pub Co Pte Lt
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献