Bio-inspired computational heuristics to study models of HIV infection of CD4+ T-cell

Author:

Raja Muhammad Asif Zahoor1ORCID,Asma Kiran2,Aslam Muhammad Saeed3

Affiliation:

1. Department of Electrical Engineering, COMSATS Institute of Information Technology, Attock Campus, Attock, Pakistan

2. Department of Computer Sciences, COMSATS Institute of Information Technology, Attock Campus, Attock, Pakistan

3. Pakistan Institute of Engineering and Applied Sciences, Nilore Islamabad, Pakistan

Abstract

In this work, biologically-inspired computing framework is developed for HIV infection of CD4[Formula: see text] T-cell model using feed-forward artificial neural networks (ANNs), genetic algorithms (GAs), sequential quadratic programming (SQP) and hybrid approach based on GA-SQP. The mathematical model for HIV infection of CD4[Formula: see text] T-cells is represented with the help of initial value problems (IVPs) based on the system of ordinary differential equations (ODEs). The ANN model for the system is constructed by exploiting its strength of universal approximation. An objective function is developed for the system through unsupervised error using ANNs in the mean square sense. Training with weights of ANNs is carried out with GAs for effective global search supported with SQP for efficient local search. The proposed scheme is evaluated on a number of scenarios for the HIV infection model by taking the different levels for infected cells, natural substitution rates of uninfected cells, and virus particles. Comparisons of the approximate solutions are made with results of Adams numerical solver to establish the correctness of the proposed scheme. Accuracy and convergence of the approach are validated through the results of statistical analysis based on the sufficient large number of independent runs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3