Stochastic supervised networks for numerical treatment of Eyring–Powell nanofluid model with Darcy Forchheimer slip flow involving bioconvection and nonlinear thermal radiation

Author:

Shah Zahoor1ORCID,Raja Muhammad Asif Zahoor2ORCID,Shoaib Muhammad3ORCID,Khan Imtiaz4ORCID,Kiani Adiqa Kausar2ORCID

Affiliation:

1. Department of Mathematics, COMSATS University Islamabad, Islamabad Campus, Pakistan

2. Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan, R.O.C.

3. Yuan Ze University, AI Center, Taoyuan 320, Taiwan

4. Department of Mathematics, Abdul Wali Khan University Mardan, Pakistan

Abstract

The aim of this study is to estimate the solution of Eyring–Powell nanofluid model (EPNFM) with Darcy Forchheimer slip flow involving bioconvection and nonlinear thermal radiation by employing stupendous knacks of neural networks-based Bayesian computational intelligence (NNBCI). A dataset for the designed NNBCI is generated with Adam numerical procedure for sundry variations of EPNFM by use of several variants including slip constant, Schmidt number, mixed convection parameter, Prandtl number, and bioconvection Lewis parameter. Numerical computations of various physical parameters of interest on EPNFM are estimated with artificial intelligence-based NNBCI and compared with reference data values generated with Adam’s numerical procedure. The accuracy, efficacy, and convergence of the proposed NNBCI to successfully solve the EPNFM are endorsed through M.S.E, statistical instance distribution studies of error-histograms, and assessment of regression metric. The proposed dataset exhibits a close alignment with the reference dataset based on error analysis from level E[Formula: see text] to E[Formula: see text] authenticates the precision of the designed procedure NNBCI for solving EPNFMs. The executive and novel physical importance of parameters governing the flow, such as nanofluid velocity, temperature, and concentration profiles, are discussed. The observations imply that the presence of the slip constant, mixed convection parameter and Lewis number influences the velocity of the nanofluid. However, it is observed that temperature of the nanofluid declines for higher values of Prandl number while the concentration of nanofluid improves with increasing values of Schmidt number.

Publisher

World Scientific Pub Co Pte Ltd

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3