Affiliation:
1. Department of Telecommunications and Information Processing, Ghent University, Belgium
2. Department of Computer Science and Artificial Intelligence, University of Granada, Spain
Abstract
In the past decades, the theory of possibility has been developed as a theory of uncertainty that is compatible with the theory of probability. Whereas probability theory tries to quantify uncertainty that is caused by variability (or equivalently randomness), possibility theory tries to quantify uncertainty that is caused by incomplete information. A specific case of incomplete information is that of ill-known sets, which is of particular interest in the study of temporal databases. However, the construction of possibility distributions in the case of ill-known sets is known to be overly complex. This paper contributes to the study of ill-known sets by investigating the inference of uncertainty when constraints are specified over ill-known values. More specific, in this paper it is investigated how the knowledge about constraint satisfaction can be inferred if the constraints themselves are defined by means of ill-known values. It is shown how such reasoning can contribute to the study of (fuzzy) temporal databases.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Information Systems,Control and Systems Engineering,Software
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献