THEORETICAL ANALYSIS OF THE LEAKAGE THROUGH THE CEMENT LINE OF A SINGLE OSTEON

Author:

GAILANI GAFFAR1ORCID,COWIN STEPHEN2

Affiliation:

1. Center of Medical Devices and Additive Manufacturing, Department of Mechanical Engineering & Industrial Design Technology, New York City College of Technology of the City University of New York, 300 Jay St, V518 Brooklyn, NY 11201, USA

2. Department of Mechanical and Biomedical Engineering, City College of New York of the City University of New York, 160 Convent Ave New York, NY 10031, USA

Abstract

This work focuses on the Lacunar–Canalicular Porosity (PLC) of cortical bone which includes the osteons. Osteons are semicylindrical porous structures saturated with fluid within the bone and are approximately 250[Formula: see text][Formula: see text]m in diameter. The outer boundary of the osteon is called the cement line. Some studies suggested that the cement line is less highly mineralized and produced evidence that it has less calcium and phosphorus and more sulfur than the neighboring bone lamellae. Most authors assume that the cement line is impermeable, while others assume that some canaliculi are crossing the cement line which will make it permeable to certain degree. The objective of this work is to develop a theoretical analysis to study the leakage through the cement line and its relationship with the pore pressure distribution. The theoretical analysis is developed using our previous analysis for osteon under harmonic loading with addition of leakage parameter. The leakage parameter varies from 0 to 1, where a value of 0 indicates free flow through the cement line and a value of 1 indicates no flow through the cement line. Experimental results could be compared to this developed theoretical solution to get in depth understanding of the effect of leakage on osteon poroelastic properties. Additionally, the developed theoretical solution will give insight into sensitivity of osteon pore pressure to leakage through the cement line.

Funder

City University of New York

Directorate for Engineering

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3