Experimental Determination of the Permeability in the Lacunar-Canalicular Porosity of Bone

Author:

Gailani Gaffar1,Benalla Mohammed2,Mahamud Rashal3,Cowin Stephen C.4,Cardoso Luis4

Affiliation:

1. Mechanical Engineering Department at Graduate Center and City College of the City, University of New York (CUNY), New York, NY 10016; Department of Mechanical Engineering Technology and Industrial Design, New York City College of Technology, Brooklyn, NY 11201

2. Biomedical Engineering Department at Graduate Center and City College of the City, University of New York (CUNY), New York, NY 10016

3. Mechanical Engineering Department, City College of New York, New York, NY 10031

4. New York Center for Biomedical Engineering, Mechanical and Biomedical Engineering Department, City College of New York, New York, NY 10031

Abstract

Abstract Permeability of the mineralized bone tissue is a critical element in understanding fluid flow occurring in the lacunar-canalicular porosity (PLC) compartment of bone and its role in bone nutrition and mechanotransduction. However, the estimation of bone permeability at the tissue level is affected by the influence of the vascular porosity in macroscopic samples containing several osteons. In this communication, both analytical and experimental approaches are proposed to estimate the lacunar-canalicular permeability in a single osteon. Data from an experimental stress-relaxation test in a single osteon are used to derive the PLC permeability by curve fitting to theoretical results from a compressible transverse isotropic poroelastic model of a porous annular disk under a ramp loading history (2007, “Compressible and Incompressible Constituents in Anisotropic Poroelasticity: The Problem of Unconfined Compression of a Disk,” J. Mech. Phys. Solids, 55, pp. 161–193; 2008, “The Unconfined Compression of a Poroelastic Annular Cylindrical Disk,” Mech. Mater., 40(6), pp. 507–523). The PLC tissue intrinsic permeability in the radial direction of the osteon was found to be dependent on the strain rate used and within the range of O(10−24)–O(10−25). The reported values of PLC permeability are in reasonable agreement with previously reported values derived using finite element analysis (FEA) and nanoindentation approaches.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3