A ROBUST QRS COMPLEX DETECTION METHOD BASED ON SHANNON ENERGY ENVELOPE AND HILBERT TRANSFORM

Author:

XU WANSONG1,DU FANYU1

Affiliation:

1. Medical Imaging Department, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China

Abstract

QRS complex detection plays an important role in electrocardiogram (ECG) automatic analysis. The accuracy and robustness of the detection algorithm greatly affect its practicability. However, the existing detection algorithms are greatly affected by ECG signal quality, and some detection algorithms cannot even work properly due to the poor signal quality. In this paper, a robust QRS complex detection algorithm is proposed based on Shannon energy envelope and Hilbert transform. The detection algorithm extracts the Shannon energy envelope of the preprocessed ECG signal, performs Hilbert transform on the envelope signal, then detects the suspected [Formula: see text]-peaks on the envelope by detecting the position of zero pass and screens the real [Formula: see text]-peaks by using a combination of ECG refractory period and backtracking mechanism. The proposed detection algorithm is validated using MIT-BIH Arrhythmia Database, and achieves the average detection accuracy of 99.69%, sensitivity of 99.81% and positive predictivity of 99.88%. Experimental results show that the proposed detection algorithm can still detect QRS complex correctly under complex interference, and the performance of the algorithm is hardly affected.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ECG R-Wave Detection and Its Application in Left Ventricular Assist Device;Journal of Circuits, Systems and Computers;2023-06-06

2. Heartbeat detector from ECG and PPG signals based on wavelet transform and upper envelopes;Physical and Engineering Sciences in Medicine;2023-03-06

3. Precise detection and localization of R-peaks from ECG signals;Mathematical Biosciences and Engineering;2023

4. ECG segmentation algorithm based on bidirectional hidden semi-Markov model;Computers in Biology and Medicine;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3