Precise detection and localization of R-peaks from ECG signals

Author:

Zhai Diguo12,Bao Xinqi3,Long Xi4,Ru Taotao12,Zhou Guofu12

Affiliation:

1. Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China

2. National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China

3. Department of Engineering, King's College London, Strand, London, WC2R 2LS, UK

4. Department of Electrical Engineering, Eindhoven University of Technology, 5612, AZ, Eindhoven, The Netherlands

Abstract

<abstract> <p>Heart rate variability (HRV) is derived from the R-R interval, which depends on the precise localization of R-peaks within an electrocardiogram (ECG) signal. However, current algorithm assessment methods prioritize the R-peak detection's sensitivity rather than the precision of pinpointing the exact R-peak positions. As a result, it is of great value to develop an R-peak detection algorithm with high-precision R-peak localization. This paper introduces a novel R-peak localization algorithm that involves modifications to the well-established Pan-Tompkins (PT) algorithm. The algorithm was implemented as follows. First, the raw ECG signal $ X\left(i\right) $ was band-pass filtered (5–35 Hz) to obtain a preprocessed signal $ Y\left(i\right) $. Second, $ Y\left(i\right) $ was squared to enhance the QRS complex, followed by a 5 Hz low-pass filter to obtain the QRS envelope, which was transformed into a window signal $ W\left(i\right) $ by dynamic threshold with a minimum width of 200 ms to mark the QRS complex. Third, $ Y\left(i\right) $ was used to generate QRS template $ T\left(n\right) $ automatically, and then the R-peak was identified by a template matching process to find the maximum absolute value of all cross-correlation values between $ T\left(n\right) $ and $ Y\left(i\right) $. The proposed algorithm achieved a sensitivity (SE) of 99.78%, a positive prediction value (PPV) of 99.78% and data error rate (DER) of 0.44% in R-peak localization for the MIT-BIH Arrhythmia database. The annotated-detected error (ADE), which represents the error between the annotated R-peak location and the detected R-peak location, was 8.35 ms for the MIT-BIH Arrhythmia database. These results outperformed the results obtained using the classical Pan-Tompkins algorithm which yielded an SE of 98.87%, a PPV of 99.14%, a DER of 1.98% and an ADE of 21.65 ms for the MIT-BIH Arrhythmia database. It can be concluded that the algorithm can precisely detect the location of R-peaks and may have the potential to enhance clinical applications of HRV analysis.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3