THE INFLUENCE OF BRAIN TISSUE MATERIAL PARAMETERS ON THE RESPONSE OF DYNAMIC CHARACTERISTICS BASED ON FINITE ELEMENT MODEL

Author:

YANG BIN1,SUN HAO1,WANG AIYUAN1,WANG QUN2

Affiliation:

1. School of Automobile & Rail Transit, Nanjing Institute of Technology, Nanjing 211167, P. R. China

2. College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China

Abstract

Aiming at the uncertainty of material parameters of human brain tissue, the influence of tissue material performance sensitivity on frequency and mode shape under free vibration is studied. In this paper, the 50th percentile finite element (FE) model of human head and neck with detailed anatomical characteristics has been chosen as the research object, the parameters of skull, cerebrospinal fluid (CSF) and brain tissue materials with high sensitivity are analyzed by orthogonal test design and variance analysis. The results show that the natural frequencies of Group 7, Group 8 and Group 9 are all around 230[Formula: see text]Hz, which are basically consistent with the initial parameter of 229.18[Formula: see text]Hz, and the intracranial displacements of the three groups are also concentrated on the lateral nasal cartilage. The main reason is that the Young’s modulus of the skull used in three groups of experiments is 9780[Formula: see text]Mpa, which is close to the initial parameter of 8000[Formula: see text]Mpa. It indicates that the material parameter of the skull has the greatest influence on the dynamic characteristics of human head and neck, followed by the CSF and brain tissue. This study provides an effective method for vehicle safety and head and neck injury protection, and supplies a reference for FE analysis of head collision damage.

Funder

Natural Science Foundation of Jiangsu Province, China

Six Talent Peaks Project in Jiangsu Province, China

Nanjing Institute of Technology, China

Postgraduate Research and Practice Innovation Program of Jiangsu Province, China

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3