Human Head Dynamic Response to Side Impact by Finite Element Modeling

Author:

Ruan J. S.1,Khalil T.1,King A. I.1

Affiliation:

1. Bioengineering Center, Wayne State University, Detroit, Michigan 48202

Abstract

The dynamic response of the human head to side impact was studied by 2-dimensional finite element modeling. Three models were formulated in this study. Model I is an axisymmetric model. It simulated closed shell impact of the human head, and consisted of a single-layered spherical shell filled with an inviscid fluid. The other two models (Model II and III) are plane strain models of a coronal section of the human head. Model II approximated a 50th percentile male head by an outer layer to simulate cranial bone and an inviscid interior core to simulate the intracranial contents. The configuration of Model III is the same as Model II but more detailed anatomical features of the head interior were added, such as, cerebral spinal fluid (CSF); falx cerebri, dura, and tentorium. Linear elastic material properties were assigned to all three models. All three models were loaded by a triangular pulse with a peak pressure of 40 kPa, effectively producing apeak force of 1954 N (440 lb). The purpose of this study was to determine the effects of the membranes and that of the mechanical properties of the skull, brain, and membrane on the dynamic response of the brain during side impact, and to compare the pressure distributions from the plane strain model with the axisymmetric model. A parametric study was conducted on Model II to characterize fully its response to impact under various conditions. It was found that: (a) The membranes affected the dynamic response of the brain significantly, the fundamental frequency of the brain was 72 Hz with membranes and 49 Hz without them: (b) Significant variations in the pressure distribution were obtained as a result of assigning different material properties to the skull and brain; (c) The normal variation of pressure from compression at the pole (impact side) to tension at the antipole (opposite to the impact side) was disrupted by the membrane and a complex distribution of pressure was found.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3