AUTOMATED CHARACTERIZATION OF CARDIOVASCULAR DISEASES USING WAVELET TRANSFORM FEATURES EXTRACTED FROM ECG SIGNALS

Author:

MOHSIN AHMAD1,FAUST OLIVER2

Affiliation:

1. Singapore University of Social Sciences, School of Science and Technology, Singapore

2. Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, United Kingdom

Abstract

Cardiovascular disease has been the leading cause of death worldwide. Electrocardiogram (ECG)-based heart disease diagnosis is simple, fast, cost effective and non-invasive. However, interpreting ECG waveforms can be taxing for a clinician who has to deal with hundreds of patients during a day. We propose computing machinery to reduce the workload of clinicians and to streamline the clinical work processes. Replacing human labor with machine work can lead to cost savings. Furthermore, it is possible to improve the diagnosis quality by reducing inter- and intra-observer variability. To support that claim, we created a computer program that recognizes normal, Dilated Cardiomyopathy (DCM), Hypertrophic Cardiomyopathy (HCM) or Myocardial Infarction (MI) ECG signals. The computer program combined Discrete Wavelet Transform (DWT) based feature extraction and K-Nearest Neighbor (K-NN) classification for discriminating the signal classes. The system was verified with tenfold cross validation based on labeled data from the PTB diagnostic ECG database. During the validation, we adjusted the number of neighbors [Formula: see text] for the machine learning algorithm. For [Formula: see text], training set has an accuracy and cross validation of 98.33% and 95%, respectively. However, when [Formula: see text], it showed constant for training set but dropped drastically to 80% for cross-validation. Hence, training set [Formula: see text] prevails. Furthermore, a confusion matrix proved that normal data was identified with 96.7% accuracy, 99.6% sensitivity and 99.4% specificity. This means an error of 3.3% will occur. For every 30 normal signals, the classifier will mislabel only 1 of the them as HCM. With these results, we are confident that the proposed system can improve the speed and accuracy with which normal and diseased subjects are identified. Diseased subjects can be treated earlier which improves their probability of survival.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3