Affiliation:
1. Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230022, P. R. China
2. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, P. R. China
3. The 105 Hospital of PLA, Hefei 230031, P. R. China
Abstract
Oculopathy is a widespread disease among people of all ages around the world. Teleophthalmology can facilitate the ophthalmological diagnosis for less developed countries that lack medical resources. In teleophthalmology, the assessment of retinal image quality is of great importance. In this paper, we propose a no-reference retinal image assessment system based on DenseNet, a convolutional neural network architecture. This system classified fundus images into good and bad quality or five categories: adequate, just noticeable blur, inappropriate illumination, incomplete optic disc, and opacity. The proposed system was evaluated on different datasets and compared to the applications based on other two networks: VGG-16 and GoogLenet. For binary classification, the good-and-bad binary classifier achieves an AUC of 1.000, and the degradation-specified classifiers that distinguish one specified degradation versus the rest achieve AUC values of 0.972, 0.990, 0.982, 0.982 for four categories, respectively. The multi-classification based on DenseNet achieves an overall accuracy of 0.927, which is significantly higher than 0.549 and 0.757 obtained using VGG-16 and GoogLeNet, respectively. The experimental results indicate that the proposed approach produces outstanding performance in retinal image quality assessment and is worth applying in ophthalmological telemedicine applications. In addition, the proposed approach is robust to the image noise. This study fills the gap of multi-classification in retinal image quality assessment.
Publisher
World Scientific Pub Co Pte Lt
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献