A CNN-BASED RETINAL IMAGE QUALITY ASSESSMENT SYSTEM FOR TELEOPHTHALMOLOGY

Author:

WANG XUEWEI1,ZHANG SHULIN1,LIANG XIAO2,ZHENG CHUN3,ZHENG JINJIN1,Sun MINGZHAI1ORCID

Affiliation:

1. Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230022, P. R. China

2. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, P. R. China

3. The 105 Hospital of PLA, Hefei 230031, P. R. China

Abstract

Oculopathy is a widespread disease among people of all ages around the world. Teleophthalmology can facilitate the ophthalmological diagnosis for less developed countries that lack medical resources. In teleophthalmology, the assessment of retinal image quality is of great importance. In this paper, we propose a no-reference retinal image assessment system based on DenseNet, a convolutional neural network architecture. This system classified fundus images into good and bad quality or five categories: adequate, just noticeable blur, inappropriate illumination, incomplete optic disc, and opacity. The proposed system was evaluated on different datasets and compared to the applications based on other two networks: VGG-16 and GoogLenet. For binary classification, the good-and-bad binary classifier achieves an AUC of 1.000, and the degradation-specified classifiers that distinguish one specified degradation versus the rest achieve AUC values of 0.972, 0.990, 0.982, 0.982 for four categories, respectively. The multi-classification based on DenseNet achieves an overall accuracy of 0.927, which is significantly higher than 0.549 and 0.757 obtained using VGG-16 and GoogLeNet, respectively. The experimental results indicate that the proposed approach produces outstanding performance in retinal image quality assessment and is worth applying in ophthalmological telemedicine applications. In addition, the proposed approach is robust to the image noise. This study fills the gap of multi-classification in retinal image quality assessment.

Funder

NSFC-CAS Joint Fund

111 Projects

973 Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3