A Neural Network for Automated Image Quality Assessment of Optic Disc Photographs

Author:

Bouris Ella1,Davis Tyler2,Morales Esteban1,Grassi Lourdes1,Salazar Vega Diana3,Caprioli Joseph1

Affiliation:

1. Department of Ophthalmology, Jules Stein Eye Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA

2. Department of Computer Science, University of California-Los Angeles, Los Angeles, CA 90095, USA

3. Department of Ophthalmology, Vision Consultants and Surgeons, Falls Church, VA 22046, USA

Abstract

This study describes the development of a convolutional neural network (CNN) for automated assessment of optic disc photograph quality. Using a code-free deep learning platform, a total of 2377 optic disc photographs were used to develop a deep CNN capable of determining optic disc photograph quality. Of these, 1002 were good-quality images, 609 were acceptable-quality, and 766 were poor-quality images. The dataset was split 80/10/10 into training, validation, and test sets and balanced for quality. A ternary classification model (good, acceptable, and poor quality) and a binary model (usable, unusable) were developed. In the ternary classification system, the model had an overall accuracy of 91% and an AUC of 0.98. The model had higher predictive accuracy for images of good (93%) and poor quality (96%) than for images of acceptable quality (91%). The binary model performed with an overall accuracy of 98% and an AUC of 0.99. When validated on 292 images not included in the original training/validation/test dataset, the model’s accuracy was 85% on the three-class classification task and 97% on the binary classification task. The proposed system for automated image-quality assessment for optic disc photographs achieves high accuracy in both ternary and binary classification systems, and highlights the success achievable with a code-free platform. There is wide clinical and research potential for such a model, with potential applications ranging from integration into fundus camera software to provide immediate feedback to ophthalmic photographers, to prescreening large databases before their use in research.

Funder

Research to Prevent Blindness

Payden Glaucoma Research Fund

Simms/Mann Family Foundation

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3