DESIGN AND ANALYSIS OF NEW STENT PATTERNS FOR ENHANCED PERFORMANCE

Author:

PANNEERSELVAM NISANTHKUMAR1ORCID,MUTHUSWAMY SREEKUMAR1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram Chennai 600127, India

Abstract

Deploying a stent to restore blood flow in the coronary artery is very complicated, as its internal diameter is smaller than 3[Formula: see text]mm. It has already been proven that mechanical stresses induced on stent and artery during deployment make the placement of stent very difficult, besides the development of complications due to artery damage. Various stent designs have already been developed, especially in the metallic category. Still, there are possibilities for developing new stent designs and patterns to overcome the complexities of the existing models. Also, the technology of metallic stents can be carried forward towards the development of bioresorbable polymeric stents. In this work, three new stent cell designs (curvature, diamond, and oval) have been proposed to obtain better performance and life. The finite element method is utilized to explore the mechanical behavior of stent expansion and determine the biomechanical stresses imposed on the stent and artery during the stenting procedure. The results obtained have been compared with the available literature and found that the curvature cell design develops lower stresses and, hence, be suitable for better performance and life.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3