Modelling and simulation of a novel shape memory alloy actuated compliant parallel manipulator

Author:

Sreekumar M1,Nagarajan T1,Singaperumal M1

Affiliation:

1. Precision Engineering and Instrumentation Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, India

Abstract

This paper presents the non-linear analysis of a shape memory alloy (SMA) actuated fully compliant spatial parallel mechanism. A compliant mechanism made of SMA wires as its actuators and SMA pipe as its structural member that exploits both the shape memory and superelastic effects is proposed and its static analysis using ANSYS is presented in this study. Finite element analysis in a multi-physics environment considering geometric and material non-linearities helps the user to analyse complex behaviour of a system. For the proposed mechanism, simulation results show: (a) 4 per cent strain for SMA actuation is optimal considering the geometric non-linearity of the proposed mechanism for obtaining maximum displacement; (b) buckling effect is less predominant while implementing the superelastic behaviour; and (c) the mechanism can be designed as a compliant device with one or more inflexion points by exploiting the superelasticity of the SMA pipe. The knowledge obtained from the simulation study could help in further miniaturization of the manipulator.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3