Relaxation of strict parity for reducible Galois representations attached to the homology of GL(3, ℤ)

Author:

Ash Avner1,Doud Darrin2

Affiliation:

1. Department of Mathematics, Boston College, Chestnut Hill, MA 02467, USA

2. Department of Mathematics, Brigham Young University, Provo, UT 84602, USA

Abstract

In this paper, we prove the following theorem: Let [Formula: see text] be an algebraic closure of a finite field of characteristic [Formula: see text]. Let [Formula: see text] be a continuous homomorphism from the absolute Galois group of [Formula: see text] to [Formula: see text]) which is isomorphic to a direct sum of a character and a two-dimensional odd irreducible representation. We assume that the image of [Formula: see text] is contained in the intersection of the stabilizers of the line spanned by [Formula: see text] and the plane spanned by [Formula: see text], where [Formula: see text] denotes the standard basis. Such [Formula: see text] will not satisfy a certain strict parity condition. Under the conditions that the Serre conductor of [Formula: see text] is squarefree, that the predicted weight [Formula: see text] lies in the lowest alcove, and that [Formula: see text], we prove that [Formula: see text] is attached to a Hecke eigenclass in [Formula: see text], where [Formula: see text] is a subgroup of finite index in [Formula: see text] and [Formula: see text] is an [Formula: see text]-module. The particular [Formula: see text] and [Formula: see text] are as predicted by the main conjecture of the 2002 paper of the authors and David Pollack, minus the requirement for strict parity.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sums of Galois representations and arithmetic homology;Transactions of the American Mathematical Society;2019-08-14

2. Reducible Galois representations and arithmetic homology for GL(4);Annales Mathématiques Blaise Pascal;2018-11-27

3. Galois representations attached to tensor products of arithmetic cohomology;Journal of Algebra;2016-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3