Sums of Galois representations and arithmetic homology

Author:

Ash Avner,Doud Darrin

Abstract

Let Γ 0 ( n , N ) \Gamma _0(n,N) denote the usual congruence subgroup of type Γ 0 \Gamma _0 and level N N in SL ( n , Z ) \text {SL}(n,{\mathbb Z}) . Suppose for i = 1 , 2 i=1,2 that we have an irreducible odd n n -dimensional Galois representation ρ i \rho _i attached to a homology Hecke eigenclass in H ( Γ 0 ( n , N i ) , M i ) H_*(\Gamma _0(n,N_i),M_i) , where the level N i N_i and the weight and nebentype making up M i M_i are as predicted by the Serre-style conjecture of Ash, Doud, Pollack, and Sinnott. We assume that n n is odd, that N 1 N 2 N_1N_2 is squarefree, and that ρ 1 ρ 2 \rho _1\oplus \rho _2 is odd. We prove two theorems that assert that ρ 1 ρ 2 \rho _1\oplus \rho _2 is attached to a homology Hecke eigenclass in H ( Γ 0 ( 2 n , N ) , M ) H_*(\Gamma _0(2n,N),M) , where N N and M M are as predicted by the Serre-style conjecture. The first theorem requires the hypothesis that the highest weights of M 1 M_1 and M 2 M_2 are small in a certain sense. The second theorem requires the truth of a conjecture as to what degrees of homology can support Hecke eigenclasses with irreducible Galois representations attached, but no hypothesis on the highest weights of M 1 M_1 and M 2 M_2 . This conjecture is known to be true for n = 3 n=3 , so we obtain unconditional results for GL ( 6 ) \text {GL}(6) . A similar result for GL ( 4 ) \text {GL}(4) appeared in an earlier paper.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3