Fault Detection Prediction Using a Deep Belief Network-Based Multi-Classifier in the Semiconductor Manufacturing Process

Author:

Kim Jae Kwon1,Lee Jong Sik2,Han Young Shin3

Affiliation:

1. Department of Medical Informatics, College of Medicine, The Catholic University of Seoul, Banpo-daero 222, Seocho-gu, Seoul 06591, South Korea

2. Department of Computer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea

3. Frontier College, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea

Abstract

The semiconductor manufacturing process is very complex, and it is the most important part of the semiconductor industry. In order to test whether or not wafers are functioning normally, a pass/fail test is conducted; however, time and cost needed for this testing increase as the number of chips increases. To address this, a machine learning technique is adopted and a high-performance classifier is needed to determine whether a pass/fail test is accurate or not. In this paper, a deep belief network (DBN)-based multi-classifier is proposed for fault detection prediction in the semiconductor manufacturing process. The proposed method consists of two phases: The first phase is a data pre-processing phase in which features required for semiconductor data sets are extracted and the imbalance problem is solved. The second phase is to configure the multi-DBN using selected features. A DBN classifier is created for each feature and, finally, fault detection prediction is performed. The proposed method showed excellent performance and can be used in the semiconductor manufacturing process efficiently.

Funder

National Research Foundation of Korea

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3