BP NEURAL NETWORK-BASED EFFECTIVE FAULT LOCALIZATION

Author:

WONG W. ERIC1,QI YU1

Affiliation:

1. Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA

Abstract

In program debugging, fault localization identifies the exact locations of program faults. Finding these faults using an ad-hoc approach or based only on programmers' intuitive guesswork can be very time consuming. A better way is to use a well-justified method, supported by case studies for its effectiveness, to automatically identify and prioritize suspicious code for an examination of possible fault locations. To do so, we propose the use of a back-propagation (BP) neural network, a machine learning model which has been successfully applied to software risk analysis, cost prediction, and reliability estimation, to help programmers effectively locate program faults. A BP neural network is suitable for learning the input-output relationship from a set of data, such as the inputs and the corresponding outputs of a program. We first train a BP neural network with the coverage data (statement coverage in our case) and the execution result (success or failure) collected from executing a program, and then we use the trained network to compute the suspiciousness of each executable statement, in terms of its likelihood of containing faults. Suspicious code is ranked in descending order based on its suspiciousness. Programmers will examine such code from the top of the rank to identify faults. Four case studies on different programs (the Siemens suite, the Unix suite, grep and gzip) are conducted. Our results suggest that a BP neural network-based fault localization method is effective in locating program faults.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effective fault localization using probabilistic and grouping approach;International Journal of System Assurance Engineering and Management;2024-08-18

2. Towards Better Graph Neural Network-Based Fault Localization through Enhanced Code Representation;Proceedings of the ACM on Software Engineering;2024-07-12

3. Fault Localization for Novice Programs Combining Static Analysis and Dynamic Detection;2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC);2024-07-02

4. Combining Error Guessing and Logical Reasoning for Software Fault Localization via Deep Learning;International Journal of Software Engineering and Knowledge Engineering;2024-05-28

5. FusionFL: A Statement-Level Feature Fusion Based Fault Localization Approach;2024 IEEE Conference on Software Testing, Verification and Validation (ICST);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3