Towards Better Graph Neural Network-Based Fault Localization through Enhanced Code Representation

Author:

Rafi Md Nakhla1ORCID,Kim Dong Jae2ORCID,Chen An Ran3ORCID,Chen Tse-Hsun (Peter)1ORCID,Wang Shaowei4ORCID

Affiliation:

1. Concordia University, Montreal, Canada

2. DePaul University, Chicago, USA

3. University of Alberta, Edmonton, Canada

4. University of Manitoba, Winnipeg, Canada

Abstract

Automatic software fault localization plays an important role in software quality assurance by pinpointing faulty locations for easier debugging. Coverage-based fault localization is a commonly used technique, which applies statistics on coverage spectra to rank faulty code based on suspiciousness scores. However, statistics- based approaches based on formulae are often rigid, which calls for learning-based techniques. Amongst all, Grace, a graph-neural network (GNN) based technique has achieved state-of-the-art due to its capacity to preserve coverage spectra, i.e., test-to-source coverage relationships, as precise abstract syntax-enhanced graph representation, mitigating the limitation of other learning-based technique which compresses the feature representation. However, such representation is not scalable due to the increasing complexity of software, correlating with increasing coverage spectra and AST graph, making it challenging to extend, let alone train the graph neural network in practice. In this work, we proposed a new graph representation, DepGraph, that reduces the complexity of the graph representation by 70% in nodes and edges by integrating the interprocedural call graph in the graph representation of the code. Moreover, we integrate additional features—code change information—into the graph as attributes so the model can leverage rich historical project data. We evaluate DepGraph using Defects4j 2.0.0, and it outperforms Grace by locating 20% more faults in Top-1 and improving the Mean First Rank (MFR) and the Mean Average Rank (MAR) by over 50% while decreasing GPU memory usage by 44% and training/inference time by 85%. Additionally, in cross-project settings, DepGraph surpasses the state-of-the-art baseline with a 42% higher Top-1 accuracy, and 68% and 65% improvement in MFR and MAR, respectively. Our study demonstrates DepGraph’s robustness, achieving state-of-the-art accuracy and scalability for future extension and adoption.

Publisher

Association for Computing Machinery (ACM)

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3