Affiliation:
1. College of Computer Science and Information Technology, Guangxi Normal University, Guilin 541004, P. R. China
Abstract
Driven by mutual benefits, there is a demand for transactional data sharing among organizations or parties for research or business analysis purpose. It becomes an essential concern to provide privacy-preserving data sharing and meanwhile maintain data utility, due to the fact that transactional data may contain sensitive personal information. Existing privacy-preserving methods, such as k-anonymity and l-diversity, cannot handle high-dimensional sparse data well, since they would bring about much data distortion in the anonymization process. In this paper, we use bipartite graphs with node attributes to model high-dimensional sparse data, and then propose a privacy-preserving approach for sharing transactional data in a new vision, in which the bipartite graph is anonymized into a weighted bipartite graph by clustering node attributes. Our approach can maintain privacy of the associations between entities and resist certain attackers with knowledge of partial items. Experiments have been performed on real-life data sets to measure the information loss and the accuracy of answering aggregate queries. Experimental results show that the approach improves the balance of performance between privacy protection and data utility.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献