Efficiency Improvement of Classification Model Based on Altered K-Means Using PCA and Outlier

Author:

Jung Se-Hoon1,Kim Jong-Chan2

Affiliation:

1. School of Connection Major, Youngsan University, Yangsan-si, Kyungnam-do 626-790, Korea

2. Department of Computer Engineering, Sunchon National University, Suncheon-si, Jeollanam-do 57922, Korea

Abstract

In the generation and analysis of Big Data following the development of various information devices, the old data processing and management techniques reveal their hardware and software limitations. Their hardware limitations can be overcome by the CPU and GPU advancements, but their software limitations depend on the advancement of hardware. This study thus sets out to address the increasing analysis costs of dense Big Data from a software perspective instead of depending on hardware. An altered [Formula: see text]-means algorithm was proposed with ideal points to address the analysis costs issue of dense Big Data. The proposed algorithm would find an optimal cluster by applying Principal Component Analysis (PCA) in the multi-dimensional structure of dense Big Data and categorize data with the predicted ideal points as the central points of initial clusters. Its clustering validity index and [Formula: see text]-measure results were compared with those of existing algorithms to check its excellence, and it had similar results to them. It was also compared and assessed with some data classification techniques investigated in previous studies and we found that it made a performance improvement of about 3–6% in the analysis costs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3