A Novel Model on Reinforce K-Means Using Location Division Model and Outlier of Initial Value for Lowering Data Cost

Author:

Jung Se-HoonORCID,Lee HansungORCID,Huh Jun-Ho

Abstract

Today, semi-structured and unstructured data are mainly collected and analyzed for data analysis applicable to various systems. Such data have a dense distribution of space and usually contain outliers and noise data. There have been ongoing research studies on clustering algorithms to classify such data (outliers and noise data). The K-means algorithm is one of the most investigated clustering algorithms. Researchers have pointed out a couple of problems such as processing clustering for the number of clusters, K, by an analyst through his or her random choices, producing biased results in data classification through the connection of nodes in dense data, and higher implementation costs and lower accuracy according to the selection models of the initial centroids. Most K-means researchers have pointed out the disadvantage of outliers belonging to external or other clusters instead of the concerned ones when K is big or small. Thus, the present study analyzed problems with the selection of initial centroids in the existing K-means algorithm and investigated a new K-means algorithm of selecting initial centroids. The present study proposed a method of cutting down clustering calculation costs by applying an initial center point approach based on space division and outliers so that no objects would be subordinate to the initial cluster center for dependence lower from the initial cluster center. Since data containing outliers could lead to inappropriate results when they are reflected in the choice of a center point of a cluster, the study proposed an algorithm to minimize the error rates of outliers based on an improved algorithm for space division and distance measurement. The performance experiment results of the proposed algorithm show that it lowered the execution costs by about 13–14% compared with those of previous studies when there was an increase in the volume of clustering data or the number of clusters. It also recorded a lower frequency of outliers, a lower effectiveness index, which assesses performance deterioration with outliers, and a reduction of outliers by about 60%.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3