THE LACE EXPANSION FOR SELF-AVOIDING WALK IN FIVE OR MORE DIMENSIONS

Author:

HARA TAKASHI1,SLADE GORDON2

Affiliation:

1. Department of Physics, Gakushuin University, Toshima-ku, Tokyo 171, Japan

2. Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1, Canada

Abstract

This paper is a continuation of the companion paper [14], in which it was proved that the standard model of self-avoiding walk in five or more dimensions has the same critical behaviour as the simple random walk, assuming convergence of the lace expansion. In this paper we prove the convergence of the lace expansion, an upper and lower infrared bound, and a number of other estimates that were used in the companion paper. The proof requires a good upper bound on the critical point (or equivalently a lower bound on the connective constant). In an appendix, new upper bounds on the critical point in dimensions higher than two are obtained, using elementary methods which are independent of the lace expansion. The proof of convergence of the lace expansion is computer assisted. Numerical aspects of the proof, including methods for the numerical evaluation of simple random walk quantities such as the two-point function (or lattice Green function), are treated in an appendix.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self‐avoiding walks and polygons on hyperbolic graphs;Journal of Graph Theory;2024-02-19

2. The scaling limit of the weakly self-avoiding walk on a high-dimensional torus;Electronic Communications in Probability;2023-01-01

3. Scaling properties of a moving polymer;The Annals of Applied Probability;2022-12-01

4. Selected Problems in Probability Theory;Lecture Notes in Mathematics;2022-08-03

5. Unwrapped two-point functions on high-dimensional tori;Journal of Statistical Mechanics: Theory and Experiment;2022-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3