Author:
Deng Youjin,Garoni Timothy M,Grimm Jens,Zhou Zongzheng
Abstract
Abstract
We study unwrapped two-point functions for the Ising model, the self-avoiding walk (SAW) and a random-length loop-erased random walk on high-dimensional lattices with periodic boundary conditions. While the standard two-point functions of these models have been observed to display an anomalous plateau behaviour, the unwrapped two-point functions are shown to display standard mean-field behaviour. Moreover, we argue that the asymptotic behaviour of these unwrapped two-point functions on the torus can be understood in terms of the standard two-point function of a random-length random walk model on
Z
d
. A precise description is derived for the asymptotic behaviour of the latter. Finally, we consider a natural notion of the Ising walk length, and show numerically that the Ising and SAW walk lengths on high-dimensional tori show the same universal behaviour known for the SAW walk length on the complete graph.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献