Some open problems on locally finite or locally nilpotent derivations and ℰ-derivations

Author:

Zhao Wenhua1

Affiliation:

1. Department of Mathematics, Illinois State University, Normal, IL 61761, USA

Abstract

Let [Formula: see text] be a commutative ring and [Formula: see text] an [Formula: see text]-algebra. An [Formula: see text]-[Formula: see text]-derivation of [Formula: see text] is an [Formula: see text]-linear map of the form [Formula: see text] for some [Formula: see text]-algebra endomorphism [Formula: see text] of [Formula: see text], where [Formula: see text] denotes the identity map of [Formula: see text]. In this paper, we discuss some open problems on whether or not the image of a locally finite (LF) [Formula: see text]-derivation or [Formula: see text]-[Formula: see text]-derivation of [Formula: see text] is a Mathieu subspace [W. Zhao, Generalizations of the image conjecture and the Mathieu conjecture, J. Pure Appl. Algebra 214 (2010) 1200–1216; Mathieu subspaces of associative algebras, J. Algebra 350(2) (2012) 245–272] of [Formula: see text], and whether or not a locally nilpotent (LN) [Formula: see text]-derivation or [Formula: see text]-[Formula: see text]-derivation of [Formula: see text] maps every ideal of [Formula: see text] to a Mathieu subspace of [Formula: see text]. We propose and discuss two conjectures which state that both questions above have positive answers if the base ring [Formula: see text] is a field of characteristic zero. We give some examples to show the necessity of the conditions of the two conjectures, and discuss some positive cases known in the literature. We also show some cases of the two conjectures. In particular, both the conjectures are proved for LF or LN algebraic derivations and [Formula: see text]-[Formula: see text]-derivations of integral domains of characteristic zero.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3