Images of ideals under derivations and ℰ-derivations of univariate polynomial algebras over a field of characteristic zero

Author:

Zhao Wenhua1ORCID

Affiliation:

1. Department of Mathematics, Illinois State, University, Normal, IL 61761, USA

Abstract

Let [Formula: see text] be a field of characteristic zero and [Formula: see text] a free variable. A [Formula: see text]-[Formula: see text]-derivation of [Formula: see text] is a [Formula: see text]-linear map of the form [Formula: see text] for some [Formula: see text]-algebra endomorphism [Formula: see text] of [Formula: see text], where [Formula: see text] denotes the identity map of [Formula: see text]. In this paper, we study the image of an ideal of [Formula: see text] under some [Formula: see text]-derivations and [Formula: see text]-[Formula: see text]-derivations of [Formula: see text]. We show that the LFED conjecture proposed in [W. Zhao, Some open problems on locally finite or locally nilpotent derivations and [Formula: see text]-derivations, Commun. Contem. Math. 20(4) (2018) 1750056] holds for all [Formula: see text]-[Formula: see text]-derivations and all locally finite [Formula: see text]-derivations of [Formula: see text]. We also show that the LNED conjecture proposed in [W. Zhao, Some open problems on locally finite or locally nilpotent derivations and [Formula: see text]-derivations, Commun. Contem. Math. 20(4) (2018) 1750056] holds for all locally nilpotent [Formula: see text]-derivations of [Formula: see text], and also for all locally nilpotent [Formula: see text]-[Formula: see text]-derivations of [Formula: see text] and the ideals [Formula: see text] such that either [Formula: see text], or [Formula: see text], or [Formula: see text] has at least one repeated root in the algebraic closure of [Formula: see text]. As a bi-product, the homogeneous Mathieu subspaces (Mathieu–Zhao spaces) of the univariate polynomial algebra over an arbitrary field have also been classified.

Funder

Simons Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3