KINETIC THEORY OF PLASMAS: TRANSLATIONAL ENERGY

Author:

GRAILLE BENJAMIN1,MAGIN THIERRY E.2,MASSOT MARC3

Affiliation:

1. Laboratoire de Mathématiques d'Orsay — UMR 8628 CNRS, Université Paris-Sud, 91405, Orsay Cedex, France

2. Center for Turbulence Research, Stanford University, 488 Escondido Mall, Stanford, CA 94305, USA

3. Laboratoire EM2C — UPR 288 CNRS, Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry Cedex, France

Abstract

In the present study, we derive from kinetic theory a unified fluid model for multicomponent plasmas by accounting for the electromagnetic field influence. We deal with a possible thermal nonequilibrium of the translational energy of the particles, neglecting their internal energy and reactive collisions. Given the strong disparity of mass between the electrons and heavy particles, such as molecules, atoms, and ions, we conduct a dimensional analysis of the Boltzmann equation and introduce a scaling based on a multiscale perturbation parameter equal to the square root of the ratio of the electron mass to a characteristic heavy-particle mass. We then generalize the Chapman–Enskog method, emphasizing the role of the perturbation parameter on the collisional operator, the streaming operator, and the collisional invariants of the Boltzmann equation. The system is examined at successive orders of approximation, each corresponding to a physical timescale. At the highest approximation order investigated, the multicomponent Navier–Stokes regime is reached for the heavy particles and is coupled to first-order drift-diffusion equations for the electrons. The transport coefficients are then calculated in terms of bracket operators whose mathematical structure allows for positivity properties to be determined and Onsager's reciprocal relations to hold. The transport coefficients exhibit an anisotropic behavior when the magnetic field is strong enough. We also give a complete description of the Kolesnikov effect, i.e. the crossed contributions to the mass and energy transport fluxes coupling the electrons and heavy particles. Finally, the first and second laws of thermodynamics are proved to be satisfied by deriving a total energy equation and an entropy equation. Moreover, the purely convective system of equations is shown to be hyperbolic.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3