Multifluid Simulations of Upper-chromospheric Magnetic Reconnection with Helium–Hydrogen Mixture

Author:

Wargnier Q. M.,Martínez-Sykora J.ORCID,Hansteen V. H.ORCID,De Pontieu B.ORCID

Abstract

Abstract Our understanding of magnetic reconnection (MR) under chromospheric conditions remains limited. Recent observations have demonstrated the important role of ion–neutral interactions in the dynamics of the chromosphere. Furthermore, the comparison between the spectral profiles and synthetic observations of reconnection events suggests that current MHD approaches appear to be inconsistent with observations. First, collisions and multithermal aspects of the plasma play a role in these regions. Second, hydrogen and helium ionization effects are relevant to the energy balance of the chromosphere. This work investigates the multifluid multispecies (MFMS) effects on MR in conditions representative of the upper chromosphere using the multifluid Ebysus code. We compare an MFMS approach based on a helium–hydrogen mixture with a two-fluid MHD model based on hydrogen only. The simulations of MR are performed in a Lundquist number regime high enough to develop plasmoids and instabilities. We study the evolution of the MR and compare the two approaches including the structure of the current sheet and plasmoids, the decoupling of the particles, the evolution of the heating mechanisms, and the composition. The presence of helium species leads to more efficient heating mechanisms than the two-fluid case. This scenario, which is out of reach of the two-fluid or single-fluid models, can reach transition region temperatures starting from upper-chromospheric thermodynamic conditions, representative of a quiet Sun scenario. The different dynamics between helium and hydrogen species could lead to chemical fractionation and, under certain conditions, enrichment of helium in the strongest outflows. This could be of significance for recent observations of helium enrichment in the solar wind in switchbacks and coronal mass ejections.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unraveling the Trigger Mechanism of Explosive Reconnection in Partially Ionized Solar Plasma;The Astrophysical Journal;2024-08-01

2. Applications of Fast Magnetic Reconnection Models to the Atmospheres of the Sun and Protoplanetary Disks;The Astrophysical Journal;2024-07-01

3. The influence of thermal pressure gradients and ionization (im)balance on the ambipolar diffusion and charge-neutral drifts;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04-25

4. IRIS2+: A Comprehensive Database of Stratified Thermodynamic Models in the Low Solar Atmosphere;The Astrophysical Journal Supplement Series;2024-02-27

5. Fresh Approaches;Astrophysics and Space Science Library;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3