A phase-field-based graded-material topology optimization with stress constraint

Author:

Auricchio Ferdinando1,Bonetti Elena2,Carraturo Massimo3,Hömberg Dietmar4,Reali Alessandro1,Rocca Elisabetta5

Affiliation:

1. Dipartimento di Ingegneria Civile e Architettura (DICAR), Università di Pavia, and IMATI-C.N.R., Via Ferrata 3, I-27100 Pavia, Italy

2. Dipartimento di Matematica “F. Enriques”, Università di Milano, and IMATI-C.N.R., Via Saldini 50, I-20133 Milano, Italy

3. Dipartimento di Ingegneria Civile e Architettura (DICAR), Università di Pavia and Chair of Computational in Engineering, Technical University of Munich, Via Ferrata 3, I-27100 Pavia, Italy

4. Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, D-10117 Berlin, Germany

5. Dipartimento di Matematica “F. Casorati”, Università di Pavia, and IMATI-C.N.R., Via Ferrata 5, I-27100 Pavia, Italy

Abstract

In this paper, a phase-field approach for structural topology optimization for a 3D-printing process which includes stress constraints and potentially multiple materials or multiscales is analyzed. First-order necessary optimality conditions are rigorously derived and a numerical algorithm which implements the method is presented. A sensitivity study with respect to some parameters is conducted for a two-dimensional cantilever beam problem. Finally, a possible workflow to obtain a 3D-printed object from the numerical solutions is described and the final structure is printed using a fused deposition modeling (FDM) 3D printer.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3