Stability and approximation of invariant measures of Markov chains in random environments

Author:

Froyland Gary1,González-Tokman Cecilia2

Affiliation:

1. School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia

2. School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia

Abstract

We consider finite-state Markov chains driven by stationary ergodic invertible processes representing random environments. Our main result is that the invariant measures of Markov chains in random environments (MCREs) are stable under a wide variety of perturbations. We prove stability in the sense of convergence in probability of the invariant measure of the perturbed MCRE to the original invariant measure. We also develop a new numerical scheme to construct rigorous approximations of the invariant measures, which converge in probability as the resolution of the scheme increases. This numerical approach is illustrated with an example of a random walk in a random environment.

Publisher

World Scientific Pub Co Pte Lt

Subject

Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hilbert space Lyapunov exponent stability;Transactions of the American Mathematical Society;2019-05-20

2. Ergodic theory for controlled Markov chains with stationary inputs;The Annals of Applied Probability;2018-02-01

3. On some random densities for random maps;Journal of Difference Equations and Applications;2017-11-13

4. Hölder continuity of Oseledets splittings for semi-invertible operator cocycles;Ergodic Theory and Dynamical Systems;2016-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3