Hilbert space Lyapunov exponent stability

Author:

Froyland Gary,González-Tokman Cecilia,Quas Anthony

Abstract

We study cocycles of compact operators acting on a separable Hilbert space and investigate the stability of the Lyapunov exponents and Oseledets spaces when the operators are subjected to additive Gaussian noise. We show that as the noise is shrunk to 0, the Lyapunov exponents of the perturbed cocycle converge to those of the unperturbed cocycle, and the Oseledets spaces converge in probability to those of the unperturbed cocycle. This is, to our knowledge, the first result of this type with cocycles taking values in operators on infinite-dimensional spaces. The infinite dimensionality gives rise to a number of substantial difficulties that are not present in the finite-dimensional case.

Funder

Australian Research Council

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference24 articles.

1. Random correlations for small perturbations of expanding maps;Baladi, Viviane;Random Comput. Dynam.,1996

2. Lyapunov exponents for random perturbations of some area-preserving maps including the standard map;Blumenthal, Alex;Ann. of Math. (2),2017

3. Genericity of zero Lyapunov exponents;Bochi, Jairo;Ergodic Theory Dynam. Systems,2002

4. The Lyapunov exponents of generic volume-preserving and symplectic maps;Bochi, Jairo;Ann. of Math. (2),2005

5. Continuity of Lyapunov exponents for random two-dimensional matrices;Bocker-Neto, Carlos;Ergodic Theory Dynam. Systems,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prevalence of stability for smooth Blaschke product cocycles fixing the origin;Discrete and Continuous Dynamical Systems;2024

2. Stability and collapse of the Lyapunov spectrum for Perron–Frobenius operator cocycles;Journal of the European Mathematical Society;2021-06-08

3. Synchronization in Discrete-Time, Discrete-State Random Dynamical Systems;SIAM Journal on Applied Dynamical Systems;2020-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3