A Fuzzy Strategy to Eliminate Uncertainty in Grading Positive Tuberculosis

Author:

Samuel R. Dinesh Jackson1,Kanna B. Rajesh2

Affiliation:

1. Imaging Physics, The University of Texas, MD Anderson Cancer Center, Texas, United States

2. School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India

Abstract

Sputum smear microscopic examination is an effective, fast, and low-cost technique that is highly specific in areas with a high prevalence of pulmonary tuberculosis. Since manual screening needs trained pathologist in high prevalence zones, the possibility of deploying adequate technicians during the epidemic sessions would be impractical. This condition can cause overburdening and fatigue of working technicians which may tend to reduce the potential efficiency of Tuberculosis (TB) diagnosis. Hence, automation of sputum inspection is the most appropriate aspect in TB outbreak zones to maximize the detection ability. Sputum collection, smear preparing, staining, interpreting smears, and reporting of TB severity are all part of the diagnosis of tuberculosis. This study has analyzed the risk of automating TB severity grading. According to the findings of the analysis, numerous TB-positive cases do not fit into the standard TB severity grade while applying direct rule-driven strategy. The manual investigation, on the other hand, arbitrarily labels the TB grade on those cases. To counter the risk of automation, a fuzzy-based Tuberculosis Severity Level Categorizing Algorithm (TSLCA) is introduced to eliminate uncertainty in classifying the level of TB infection. TSLCA introduces the weight factors, which are dependent on the existence of maximum number of Acid-Fast Bacilli (AFB) per microscopic Field of View (FOV). The fuzzification and defuzzification operations are carried out using the triangular membership function. In addition, the [Formula: see text]-cut approach is used to eliminate the ambiguity in TB severity grading. Several uncertain TB microscopy screening reports are tested using the proposed TSLCA. Based on the experimental results, it is observed that the TB grading by TSLCA is consistent, error-free, significant and fits exactly into the standard criterion. As a result of the proposed TSLCA, the uncertainty of grading is eliminated and the reliability of tuberculosis diagnosis is ensured when adapting automatic diagnosis.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3