Affiliation:
1. Advanced Robotics and Intelligent Systems (ARIS) Laboratory, School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
Abstract
Cooperative exploration in unknown environments is fundamentally important in robotics, where the real-time path planning and proper task allocation strategies are the key issues for multi-robot cooperation. In this paper, a PSO-based approach, combined with a fuzzy obstacle avoidance module, is proposed for cooperative robots to accomplish target searching and foraging tasks in unknown environments. The proposed cooperation strategy for a multi-robot system makes use of the potential field function as the fitness function of PSO, while the proposed fuzzy obstacle-avoidance module improves the smoothness of robot trajectory. In the simulation studies, several scenarios with and without the fuzzy module are investigated. The robot trajectory smoothness improvement is demonstrated through the comparative studies.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Theoretical Computer Science,Software
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献