Research on 3D Face Reconstruction Algorithm Based on ResNet and Transformer

Author:

Yaermaimaiti Yilihamu1,Yan Tianxing1,Zhao Yuhang1,Kari Tusongjiang1

Affiliation:

1. School of Electrical Engineering, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China

Abstract

In view of the problems of high production cost, scarcity and lack of diversity of 3D face datasets, this paper designs an end-to-end self-supervised learning 3D face reconstruction algorithm with a single 2D face image as input, which only uses 2D face datasets to complete model training. First, the improved ResNet module is introduced to preprocess the input face image. The deep residual neural network has strong feature extraction and characterization ability for the image, which can provide rich high-level semantic feature maps for the subsequent subnetwork. Then, add transformer module completely based on self-attention mechanism to the parameter prediction subnetwork, which can make different parameters of the subnetwork focus on self-related feature map information and avoid interference from invalid feature map information, so as to further improve the parameter prediction accuracy of the subnetwork. Next, training, ablation and comparison experiments were conducted on CelebA, BFM and Photoface datasets, and the combined function of pixel loss function and perceptual loss function was selected as the loss function. The experimental results show that: compared with the historical optimal results of the same network structure, the scale-invariant depth error (SIDE) and mean angle deviation (MAD) are improved by 5.9% and 10.8%, respectively, which strongly proves the effectiveness of the algorithm. Finally, in order to verify the actual effect of the 3D face reconstruction algorithm, examples are selected in this paper for reconstruction. The 3D faces generated by the algorithm all have a good sense of reality, which intuitively and effectively proves the advancement of the algorithm.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Personalized Sports Training Based on Big Data Algorithms;Proceedings of the 2024 International Conference on Smart City and Information System;2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3